Abstract
The time series forecasting strategy, Auto-Regressive Integrated Moving Average (ARIMA) model, is applied on the time series data consisting of Adobe stock prices, in order to forecast the future prices for a period of one year. ARIMA model is used due to its simple and flexible implementation for short term predictions of future stock prices. In order to achieve stationarity, the time series data requires second-order differencing. The comparison and parameterization of the ARIMA model has been done using auto-correlation plot, partial auto-correlation plot and auto.arima() function provided in R (which automatically finds the best fitting model based on the AIC and BIC values). The ARIMA (0, 2, 1) (0, 0, 2) [12] is chosen as the best fitting model, with a very less MAPE (Mean Absolute Percentage Error) of 3.854958%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.