Abstract
Market Basket Analysis often involves applying the de facto association rule mining method on massive sales transaction data. In this paper, we argue that association rule mining is not always the most suitable method for analysing big market-basket data. This is because the data matrix to be used for association rule mining is usually large and sparse, resulting in sluggish generation of many trivial rules with little insight. To address this problem, we summarise a real-world sales transaction data set into time series format. We then use time series clustering to discover commonly purchased items that are useful for pricing or formulating cross-selling strategies. We show that this approach uses a data set that is substantially smaller than the data to be used for association analysis. In addition, it reveals significant patterns and insights that are otherwise hard to uncover when using association analysis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have