Abstract

We demonstrate three-dimensional imaging using single-cycle terahertz electromagnetic pulses. Reflection-mode imaging is performed with a photoconductive transmitter and receiver and a reconstruction algorithm based on time reversal. A two-dimensional array is synthesized from ten concentric ring annular arrays with numerical apertures ranging from 0.27 to 0.43. The system clearly distinguishes image planes separated by 1.5 mm and achieves a −6 dB lateral resolution of 1.1 mm. In terms of the illuminating terahertz power spectrum, the lateral resolution is 38% and 81% of the peak and mean wavelengths, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.