Abstract

We investigate a bilayer system of critical HgTe quantum wells, each featuring a spin-degenerate pair of massless Dirac fermions. In the presence of an electrostatic interlayer Coulomb coupling, we determine the exciton condensate order parameter of the system self-consistently. Calculating the bulk topological Z2 invariant of the resulting mean-field Hamiltonian, we discover a novel time reversal symmetric topological exciton condensate state, coined the helical topological exciton condensate. We argue that this phase can exist for experimentally relevant parameters. Interestingly, due to its multiband nature, the present bilayer model exhibits a nontrivial interplay between spontaneous symmetry breaking and topology: Depending on which symmetry the condensate order parameter spontaneously picks in combined orbital and spin space, stable minima in the free energy corresponding to both trivial and nontrivial gapped states can be found.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.