Abstract

A low-complexity receiver is proposed for high-frequency underwater acoustic multiple-input-multiple-output (MIMO) channels. The receiver uses time reversal combining followed by a single-channel decision feedback equalizer (DFE) to deal with the intersymbol interference. Periodical MIMO channel estimation is employed to track fast channel fluctuations. Both serial and parallel interference cancellation techniques are integrated with time reversal DFE to address the cochannel interference (CoI) in underwater MIMO systems. Two channel estimation algorithms are also implemented. It was demonstrated through the experiment conducted at Kauai, HI in 2005 that the proposed receiver can deal with the fast-fluctuating, dispersive MIMO channel at the carrier frequency of 37.5 kHz. Parallel interference cancellation combined with matching pursuit channel estimation was shown to provide significant performance improvements, indicating the receiver algorithm can effectively suppress the CoI. Four streams of binary phase-shift keying (BPSK) sequences at an aggregate rate of 16 kb/s and quadrature phase-shift keying (QPSK) sequences at a rate of 32 kb/s were demodulated at low bit error rates. These data rates corresponded to bandwidth efficiencies of 2.29 b/s/Hz or 4.57 b/s/Hz in a dynamic underwater environment, where the source and the receiver were drifting at a 2-km range.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call