Abstract
Effects of unilateral sciatic neurectomy on the responses of both cancellous and cortical bones were studied in growing female rats at 0, 1, 4, 8, and 12 weeks after operation. Using double-fluorescent labeling techniques, histomorphometric analyses were performed on longitudinal sections of proximal tibial metaphyseal secondary spongiosa (PTM) and on cross sections of tibial shaft (TX). In PTM, sciatic neurectomy not only inhibited the age-related bone gain, but also reduced the trabecular bone mass by 46%, which was accompanied by decreases in trabecular number, thickness, and node to node density, and an increase in trabecular separation and free end to free end density. The bone loss occurred mainly between 1 and 4 weeks after operation. A sharp increase in bone formation indices was observed during the first week after nerve section. However, these endpoints quickly dropped to levels lower than those of sham-operated controls at 4 weeks, and were not different from the control levels at 8 weeks after operation. Eroded surface increased progressively after sciatic neurectomy during the 12 weeks experimental period. In TX, sciatic neurectomy inhibited the age-related increase in total tissue area that maintained it at the basal control level. However, the cortical bone area in neurectomized legs was lower than that in sham-operated controls. Sciatic neurectomy also stimulated the bone formation indices on both periosteal and endocortical surfaces during the first week after operation. These endpoints declined sharply between 1 and 4 weeks and then maintained at control levels between 8 and 12 weeks post surgery. Endocortical eroded surface increased 1 week after neurectomy, reached the peak at 8 weeks, and then decreased thereafter. These findings suggest that (1) sciatic neurectomy not only inhibited age-related bone gain but also induced marked bone loss in cancellous bone site and inhibited age-related bone gain in cortical bone site, which mainly resulted from the decrease in bone formation and the increase in bone resorption; (2) the changes in both cancellous and cortical bones responded to sciatic neurectomy occurred mostly within the first 4 weeks and stabilized between 8 and 12 weeks after surgical intervention. In conclusion, the unilateral sciatic neurectomized rat is a complex model in which to study osteopenia. Despite sciatic neurectomy being a simple operation, the interactions of skeletal responses to postsurgical regional acceleratory phenomenon (RAP) and disuse and adaptation changes cannot be clearly differentiated. Furthermore, the complications from growth and aging should be avoided.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have