Abstract

Time response of a silicon photonic nanowire-waveguide microelectromechanical switch is studied by measuring optical output and analyzing mechanical and electrical dynamics. The switching mechanism is based on the gap variation of a directional waveguide coupler consisting of 400-nm-wide and 260-nm-thick waveguides. One of the coupler waveguides is moved by an ultrasmall comb actuator. A theoretical model is proposed by combining the mechanical motion and the electrical circuit response of the switch. By analyzing the model, an optimum condition for switching rise time is obtained to be ~10 μs, where the mechanical oscillation is suppressed by the driving electrical circuit with a large resistance. The rise time measured from the optical output intensity was 18 μs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.