Abstract
The fine-tuning of the growth conditions and post-deposition treatments is of fundamental importance to improve the efficiency of photovoltaic devices based on all-inorganic metal halide perovskites like CsPbBr3. In this work, we used time-resolved terahertz spectroscopy (TRTS) in combination with optical characterization techniques, x-ray diffraction (XRD), and scanning electron microscopy, to probe the different properties induced by a low-temperature (180 °C) annealing treatment on evaporated CsPbBr3 thin-films. We observed a faster build-up and relaxation dynamics in the annealed sample, accompanied by a remarkable decrease of the photoluminescence intensity and minor changes in the photoconductivity and XRD measurements as compared to the as-deposited sample. We estimated for both the samples a mobility of cm2 V−1 s−1. Our results suggest that the lattice reorganization induced by low-temperature annealing of evaporated CsPbBr3 could lead to a different charge carrier-phonon coupling and to an increased contribution of non-radiative recombination channels. We found that TRTS can be effectively used to follow the changes induced by post-deposition thermal annealing of CsPbBr3.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have