Abstract

Ultrafast light pulses can be used to control electronic, magnetic and structural phases of complex solids. Here, we investigate the dynamics of insulator-metal phase transitions in colossal magnetoresistive (CMR) manganites by a combination of femtosecond visible-to-midinfrared pump-probe techniques and transport measurements. We show that an insulator-metal transition can be stimulated in CMR manganites by both above bandgap excitation and selective excitation of individual vibrational degrees of freedom. These two approaches rely on the ultrafast manipulation of parameters controlling the electronic filling and the electronic bandwidth respectively, extending the concepts of filling and bandwidth control to the ultrafast timescale. The ultrafast vibrational control of correlated-electron phases may provide new insights into the role played by lattice vibrations in determining the electronic properties of complex solids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.