Abstract

The phase transition dynamics of amorphous Ag8In14Sb55Te23 (AIST) thin films induced by single nanosecond laser pulses were studied by transient optical reflectivity and electrical resistance measurements with nanosecond resolution. Phase transition driven by nanosecond laser pulses can be achieved in a proper fluence range on AIST thin films. The results show that phase transition dynamics driven by nanosecond laser pulses was a multi-stage optical evolution process involving melt, solidification, recalescence, and recrystallion. However, it was found that the real-time responses of optical and electrical signals were quite different under the same irradiated condition. The recalescence process reflected by the second rising of optical reflectivity will not result in obvious changes in electrical resistance. The dependence of saturated time determined by optical and electrical evolution curve on laser pulse fluence was compared and analyzed. A two-dimensional percolation model was employed to explain the difference between electrical and optical transient responses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call