Abstract

Raman scattering is a very powerful tool employed to characterize molecular systems. Here we propose a novel theoretical strategy to calculate the Raman cross-section in time domain, by computing the cumulative Raman signal emitted during the molecular evolution in time. Our model is based on a numerical propagation of the vibronic wave function under the effect of a light pulse of arbitrary shape. This approach can therefore tackle a variety of experimental setups. Both resonance and nonresonance Raman scattering can be retrieved, and also the time-dependent fluorescence emission is computed. The model has been applied to porphyrin considering both resonance and nonresonance conditions and varying the incident field duration. Moreover the effect of the vibrational relaxation, which should be taken into account when its time scale is similar to that of the Raman emission, has been included through the stochastic Schroedinger equation approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call