Abstract

We describe the temporal evolution of the time-resolved photoemission response of the spinless Falicov-Kimball model driven out of equilibrium by strong applied fields. The model is one of the few possessing a metal-insulator transition and admitting an exact solution in the time domain. The nonequilibrium dynamics, evaluated using an extension of dynamical mean-field theory, show how the driven system differs from two common viewpoints - a quasiequilibrium system at an elevated effective temperature (the "hot" electron model) or a rapid interaction quench ("melting" of the Mott gap) - due to the rearrangement of electronic states and redistribution of spectral weight. The results demonstrate the inherent trade-off between energy and time resolution accompanying the finite width probe pulses, characteristic of those employed in pump-probe time-domain experiments, which can be used to focus attention on different aspects of the dynamics near the transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.