Abstract
In the present paper, we ascertain two novel findings on chiral-index-selective binding/separating of single-walled carbon nanotubes (SWNTs) with a nonaromatic polymer, poly(dialkylsilane) (PSi). PSi is a typical σ-conjugated polymer, composed of alkyl side chains attached to the silicon (Si)-catenated main chain. First, PSi's with linear alkyl side chains showed significant diameter-selective wrapping for SWNTs with ca. 0.9 nm in diameter, resulting in the selective separation of (7,6) and (9,4) SWNTs. Its driving force was demonstrated to be cooperative CH-π interactions among the alkyl side chains of PSi's and the curved graphene of SWNTs. Second, the dynamic wrapping behavior of PSi's onto SWNTs was elucidated with time-resolved UV spectroscopy. Highly anisotropic UV absorption of PSi along the Si main chain was utilized as a "chromophoric indicator" to monitor the global/local conformations, which enabled us to track kinetic structural changes of PSi's on SWNTs. Consequently, we concluded that upon wrapping, flexible/helical PSi with an average dihedral angle (φ) of 145° and Kuhn's segment length (λ(-1)) of 2.6 nm interconverted to the more stiffer/planar conformation with 170° and λ(-1) of 7.4 nm. Furthermore, through kinetic analyses of the time-course UV spectra, we discovered the fact that PSi's involve three distinct structural changes during wrapping. That is, (i) the very fast adsorption of several segments within dead time of mixing (<30 ms), following (ii) the gradual adsorption of loosely wrapped segments with the half-maximum values (τ(1)) of 31.4 ms, and (iii) the slow rearrangement of the entire chains with τ(2) of 123.1 ms, coupling with elongation of the segment lengths. The present results may be useful for rational design of polymers toward chiral-index-selective binding/separating of desired (n,m) SWNTs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.