Abstract
The dynamics of material response following initial localized energy deposition by the laser pulse on the material's surface is still largely unknown. We describe a time-resolved microscope system that enables the study of the sequence of events and the individual processes involved during the entire timeline from the initial energy deposition to the final state of the material, typically associated with the formation of a crater on the surface. To best capture individual aspects of the damage timeline, this system can be configured to multiple imaging arrangements, such as multiview image acquisition at a single time point, multi-image acquisition at different time points of the same event, and tailored sensitivity to various aspects of the process. As a case example, we present results obtained with this system during laser-induced damage on the exit surface of fused silica.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have