Abstract

We propose an all-optical technique to record the time information of relativistic electron beams with sub-optical-cycle duration. The technique is based on the interaction of the electron beam with the ponderomotive potential of an optical traveling wave generated by two counter-propagating circularly polarized optical fields at different frequencies in vacuum. One of the optical pulses is a vortex laser pulse, and the other is a normal Gaussian laser pulse. The time information of the electron beam is mapped into the angular information, which can be converted into a spatial distribution after a drift section. Thus, the temporal profile and arrival time of the electron beam can be retrieved from the spatial distribution of the electron beam. The measurement has a dynamic range comparable to the period of the optical intensity grating formed by two counter-propagating laser pulses. This technique may have wide applications in many research fields that require sub-optical-cycle electron beams.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.