Abstract

Measuring temperature in nanoscale spatial resolution either at or far from equilibrium is of importance in many scientific and technological applications. Although negatively charged nitrogen-vacancy (NV(-)) centers in diamond have recently emerged as a promising nanometric temperature sensor, the technique has been applied only under steady state conditions so far. Here, we present a three-point sampling method that allows real-time monitoring of the temperature changes over ±100 K and a pump-probe-type experiment that enables the study of nanoscale heat transfer with a temporal resolution of better than 10 μs. The utility of the time-resolved luminescence nanothermometry was demonstrated with 100 nm fluorescent nanodiamonds spin-coated on a glass substrate and submerged in gold nanorod solution heated by a near-infrared laser, and the validity of the measurements was verified with finite-element numerical simulations. The combined theoretical and experimental approaches will be useful to implement time-resolved temperature sensing in laser processing of materials and even for devices in operation at the nanometer scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.