Abstract

Nitrogen-vacancy (NV) centers in nanodiamonds are a promising quantum communication system offering robust and discrete single photon emission, but a more thorough understanding of properties of the NV centers is critical for real world implementation in functional devices. The first step to understanding how factors such as surface, depth, and charge state affect NV center properties is to directly characterize these defects on the atomic scale. Here we use Angstrom-resolution scanning transmission electron microscopy (STEM) to identify a single NV center in a ∼4 nm natural nanodiamond through simultaneous acquisition of electron energy loss and energy dispersive X-ray spectra, which provide a characteristic NV center peak and a nitrogen peak, respectively. In addition, we identify NV centers in larger, ∼15 nm synthetic nanodiamonds, although without the single-defect resolution afforded by the lower background of the smaller natural nanodiamonds. We have further demonstrated the potential to directly position these technologically relevant defects at the atomic scale using the scanning electron beam to "herd" NV centers and nitrogen atoms across their host nanodiamonds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.