Abstract

Fast electrical streamer and glow avalanches in ZnSe semiconductors are investigated, for applications in fast spontaneous or triggered switches. We present time-resolved observations of these self-sustained, impact ionization events in bulk polycrystalline ZnSe at room temperature. Under high voltages (/spl sim/20 kV) short-current pulse (/spl sim/3 ns) electrical excitation, the 1 ns risetime current pulses cause the emission of the bandgap radiation, which in turn is used to characterize the role of the plasma during the switching interval. Using a picosecond resolution streak camera, plasma streamers were recorded, in undoped ZnSe, and a uniform glow was observed in n-doped samples for the duration of the 3 ns, 1 kA current pulse. This paper concerns the behavior of the avalanche breakdown mechanism, which is relevant for applications in high energy switches, and we will discuss the possibility of using the avalanche process to pump high-power light-emitting semiconductor devices. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.