Abstract
In this work, the dynamic response of the sinoatrial node (SAN), the natural pacemaker of the heart, to short external stimuli is investigated using the Zhang et al. model. The model equations are solved twice for the central cell and for the peripheral cell. A short current pulse is applied to reset the spontaneous rhythmic activity of the single sinoatrial node cell. Depending on the stimulus timing either a delay or an advance in the occurrence of next action potential is produced. This resetting behavior is quantified in terms of phase transition curves (PTCs) for short electrical current pulses of varying amplitude which span the whole period. For low stimulus amplitudes the transition from advance to delay is smooth, while at higher amplitudes abrupt changes and discontinuities are observed in PTCs. Such discontinuities reveal critical stimuli, the application of which can result in annihilation of activity in central SAN cells. The detailed analysis of the ionic mechanisms involved in its resetting behavior of sinoatrial node cell models provides new insight into the dynamics and physiology of excitation of the sinoatrial node of the heart.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.