Abstract

We demonstrate detection of many-particle hole states in InAs/GaAs quantum dots with single charge resolution up to a temperature of 75 K. Capacitance-voltage measurements as well as time-resolved current measurements in an adjacent two-dimensional hole gas are used to determine the emission and capture time constants from 4 K up to 130 K. A transition from pure tunneling to thermally assisted tunneling is observed with increasing temperature. An equivalent circuit model gives access to the energy level splittings of the many-particle hole states and explains the broadening of the peaks at higher temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.