Abstract

A novel heat flux sensor was tested that allows for time-resolved heat flux measurements in internal ribbed channels related to the study of passages in gas turbine blades. The working principle of the atomic layer thermopile (ALTP) sensor is based on a thermoelectric field created by a temperature gradient over an yttrium-barium-copper-oxide (YBCO) crystal (the transverse Seebeck effect). The sensors very fast frequency response allows for highly time-resolved heat flux measurements up to the 1MHz range. This paper explains the design and working principle of the sensor, as well as the benchmarking of the sensor for several flow conditions. For internal cooling passages, this novel sensor allows for highly accurate, time-resolved measurements of heat transfer coefficients, leading to a greater understanding of the influence of fluctuations in temperature fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.