Abstract

Equatorial X-ray diffraction patterns were recorded from small bundles of one to three chemically skinned frog sartorius muscle fibres (time resolution 250 μs) during rapid stretch and subsequent release. In the relaxed state, the dynamic A-band lattice spacing change as a result of a 2 % step stretch (determined from the positions of the 10 and 11 reflections) resulted in a 21 % increase in lattice volume, while static studies of spacing and sarcomere length indicated than an increase in volume of ⩾50 % for the same length change. In rigor, stretch caused a lattice volume decrease which was reversed by a subsequent release. In activated fibres (pCa 4.5) exposed to 10 mM 2,3-butanedione 2-monoxime (BDM), stretch was accompanied by a lattice compression exceeding that of constant volume behaviour, but during tension recovery, compression was partially reversed to leave a net spacing change close to that observed in the relaxed fibre. In the relaxed state, spacing changes were correlated with the amplitude of the length step, while in rigor and BDM states, spacing changes correlated more closely with axial force. This behaviour is explicable in terms of two components of radial force, one due to structural constraints as seen in the relaxed state, and an additional component arising from cross-bridge formation. The ratio of axial to radial force for a single thick filament resulting from a length step was four in rigor and BDM, but close to unity for the relaxed state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.