Abstract

PurposeTo investigate the biological significance of introducing time-resolved dose rate distributions (TR-DRD) in brachytherapy. Materials and methodsThe treatment plan of a head and neck patient treated with pulsed-dose-rate (PDR) brachytherapy was considered. The TR-DRD was calculated on the basis of a Monte Carlo generated single source dose rate matrix taking into account the dose rate per source dwell position. Biologically Effective Dose (BED) was obtained considering either the mean dose rate per pulse (analytical method) or the TR-DRD (numerical method). Corresponding Tumor Control Probabilities (TCP) were calculated and compared for various PDR schemes and repair half-times from the literature. The dose of the biologically equivalent high-dose-rate (HDR) treatment schedule was also evaluated. ResultsThe analytical method presents an overall BED underestimation (up to 2%) relative to TR-DRD results. This is associated with an analytical-based TCP underestimation which increases with dose/pulse, pulse duration and period time and decreases with total dose. The half-time of repair seems to have the largest impact on the TCP calculations, with significant differences (up to 39.1%) corresponding to the shorter repair half-times. Regarding the equivalent HDR treatment schedule, the analytical method resulted to a HDR isoeffective dose underestimation lower than 2.2% and thus does not warrant any change in the derivation of the equivalent HDR scheme. ConclusionTR-DRD data should be taken into account for PDR biological effectiveness estimations, especially for short tissue repair half-times. This does not appear however to influence dose prescription of the equivalent HDR treatment schedule for mobile tongue carcinoma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.