Abstract

A PC plug-in card for on-line time resolved fluorescence detection of single dye molecules based on a new time-correlated single photon counting (TCSPC) module is described. The module contains all electronic components constant fraction discriminators (CFDs), time-to-amplitude converter (TAC), analog-to-digital converter (ADC), multichannel analyzer (MCA timers) on board required for TCSPC. A fast TAC design in combination with a fast flash ADC and an error-correcting ADC/MCA principle results in a maximum count rate of 8 MHz (dead time 125 ns). A dual memory architecture allows for unlimited recording of decay curves with collection times down to 150 μs without time gaps between subsequent recordings. Applying a short-pulse diode laser emitting at 640 nm with a repetition rate of 60 MHz in combination with a confocal microscope, we studied bursts of fluorescence photons from individual dye labeled mononucleotide molecules (Cy5-dCTP) in a cone shaped microcapillary with an inner diameter of 0.5 μm at the end of the tip. The flow of the conjugates was controlled by electrokinetic forces. The presented technique permits the counting and identification of all labeled analyte molecules present in a given sample due to their characteristic velocities, burst sizes, and fluorescence decay times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.