Abstract

The time-resolved differential absorption of the ZnSe/ZnSTe superlattice is studied using femtosecond pump-probe measurements. Transient spectral hole burning due to the initial nonthermal carrier distribution is observed at zero time delay and the carriers are thermalized within 0.5 ps. The high-energy tail of the differential absorption spectra was used to deduce the effective temperature of the thermalized carriers. Rapid hot-carrier cooling from a temperature of 763 to 450 K within the first 4 ps is observed, with carrier cooling slowing down hence. This initial fast hot-carrier cooling is consistent with the strong carrier–phonon interaction in large gap II–VI semiconductors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.