Abstract

The model of weak measurements is applied to various problems, related to the time problem in quantum mechanics. The review and generalization of the theoretical analysis of the time problem in quantum mechanics based on the concept of weak measurements are presented. A question of the time interval the system spends in the specified state, when the final state of the system is given, is raised. Using the concept of weak measurements the expression for such time is obtained. The results are applied to the tunneling problem. A procedure for the calculation of the asymptotic tunneling and reflection times is proposed. Examples for delta-form and rectangular barrier illustrate the obtained results. Using the concept of weak measurements the arrival time probability distribution is defined by analogy with the classical mechanics. The proposed procedure is suitable to the free particles and to particles subjected to an external potential, as well. It is shown that such an approach imposes an inherent limitation to the accuracy of the arrival time definition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call