Abstract
In this paper, the non-isentropic compressible Navier-Stokes-Korteweg system with a time periodic external force is considered in $\mathbb{R}^n$. The optimal time decay rates are obtained by spectral analysis. Using the optimal decay estimates, we show that the existence, uniqueness and time-asymptotic stability of time periodic solutions when the space dimension $n\geq 5$. Our proof is based on a combination of the energy method and the contraction mapping theorem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.