Abstract

In this paper, we study the Navier–Stokes equations with a time periodic external force in R n . We show that a time periodic solution exists when the space dimension n ⩾ 5 under some smallness assumption. The main idea is to combine the energy method and the spectral analysis for the optimal decay estimates on the linearized solution operator. With the optimal decay estimates, we prove the existence and uniqueness of time periodic solution in some suitable function space by the contraction mapping theorem. In addition, we also study the time asymptotic stability of the time periodic solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.