Abstract

The time periodic saturated boiling heat transfer in a horizontal annulus was investigated experimentally where the walls are under an oscillating heat flux. The fluid enters the duct with zero vapor quality (saturated liquid state). The amplitude of the imposed heat flux oscillation Δq varies from 0% to 50% of mean imposed heat flux q¯ and four different periods of heat flux oscillation tp , including 20, 30, 60 and 120s are applied to the system. The measured data display that when the applied heat flux is close to that for the onset of stable flow boiling, intermittent flow boiling appears in which nucleate boiling on the heated surface only exists in a partial interval of each periodic cycle and the heat flux oscillation does not noticeably affect the time-average boiling curves and heat transfer coefficients. Besides, the heated wall temperature and evaporating flow pattern are found to oscillate periodically in time as well and at the same frequency as the imposed heat flux oscillation. Furthermore, in the persistent boiling the resulting oscillation amplitudes of the heated surface temperature, heat transfer coefficient gets larger for a longer period and larger amplitude of the imposed heat flux oscillation and for a higher mean imposed heat flux. The substantial time lag in the heated surface temperature oscillation is observed. In the first half of the periodic cycle in which the heat flux reduces with time, after the time lag the heated wall temperature decreases with time. The inverse processes occur in the second half of the cycle in which imposed heat flux increases with time. Finally, flow regime maps are provided to explain the boundaries separating different boiling regimes for the R-134a saturated boiling in the duct.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.