Abstract

We investigate the time-optimal solution of the selective control of two uncoupled spin 1/2 particles. Using the Pontryagin Maximum Principle, we derive the global time-optimal pulses for two spins with different offsets. We show that the Pontryagin Hamiltonian can be written as a one-dimensional effective Hamiltonian. The optimal fields can be expressed analytically in terms of elliptic integrals. The time-optimal control problem is solved for the selective inversion and excitation processes. A bifurcation in the structure of the control fields occurs for a specific offset threshold. In particular, we show that for small offsets, the optimal solution is the concatenation of regular and singular extremals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call