Abstract

Path planning is the precondition for Hybrid Autonomous Underwater Vehicles (HAUV) to enter the submerged area to undertake a mission. The influence of ocean currents on HAUV should be further investigated to obtain a time-optimal path. The improved A* algorithm and the neural network model are employed in this paper to plan a time-optimal path for the vehicle. The HAUV in glider mode is capable of traveling forward mainly through the zigzag motion in vertical plane. Since the vehicle can only receive the command orders when it surfaces from the water, the path is expected to include a series of discrete waypoints in the water surface. At the same time, the presence of submerged riverbeds is also taken into account to avoid hazards for HAUVs when it navigates in the water. It can be demonstrated that ocean currents can be used to decrease the operating time. The comparison results of the two methods verify that the size of the map affects the calculation time. In addition, the neural node represented method surpasses the modified A* method, especially when the map is too large.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.