Abstract
Recently, research on path planning for the autonomous underwater vehicles (AUVs) has developed rapidly. Heuristic algorithms have been widely used to plan a path for AUV, but most traditional heuristic algorithms are facing two problems, one is slow convergence speed, the other is premature convergence. To solve the above problems, this paper proposes a new heuristic algorithms fusion, which improves the genetic algorithm with the ant colony optimization algorithm and the simulated annealing algorithm. In addition, to accelerate convergence and expand the search space of the algorithm, some algorithms like trying to cross, path self-smoothing and probability of genetic operation adjust adaptively are proposed. The advantages of the proposed algorithm are reflected through simulated comparative experiments. Besides, this paper proposes an ocean current model and a kinematics model to solve the problem of AUV path planning under the influence of ocean currents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.