Abstract
Creep behavior of wood plays a fundamental role in precision processing of wood. In this work, experimental creep tests have been conducted to determine the influence of earlywood vessel location and moisture content on creep behavior of Quercus alba (white oak). Time-moisture superposition principle was applied to predict long-term creep behavior of white oak. Results revealed that both of instantaneous and 45-min strain of specimens increased with the increasing of moisture content and decreased with increasing distance between earlywood vessel belt and load-bearing surface significantly. Additionally, the time-moisture superposition principle was found to have feasibility to predict creep behavior of white oak with various earlywood vessel locations and moisture content ranges (6 % - 18 %). We believe that the proposed investigation was beneficial for the processing precision and civil engineering applications of wood.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.