Abstract

Time‐lapse microgravity surveying combined with absolute gravity measurements is used to investigate water storage changes in a karst aquifer of ∼100 km2 area. The survey consists of 40 gravity stations measured with a relative gravimeter; absolute gravity is measured at three stations for each survey. In total, four gravity surveys are performed over a 2 year time period during consecutive wet and dry periods. Survey precisions range between 2.4 and 5 μGal, enabling statistically significant detection of 10 μGal change, i.e., ∼0.25 m equivalent water level change. Observed gravity changes are coherent between consecutive survey periods, i.e., net water withdrawal and net water recharge is observed, reaching changes as high as 22 μGal. Observed gravity changes allow refining evapotranspiration estimates, which may serve to improve the water budget of the aquifer. High‐and low‐gravity amplitude zones characterize the karst system, demonstrating spatially variable storage behavior. Geomorphologic considerations are invoked to explain the location of preferential zones of water storage, and a conceptual model of water storage is discussed for the studied karst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.