Abstract

Previous investigations have shown that the instantaneous eigenstates of a molecule interacting via its polarizability with a strong electric field of a nonresonant laser pulse are pendular hybrids of field-free rotational states, aligned along the field direction. However, nonadiabatic effects during the time evolution of the initial field-free rotational state could cause the molecule to end up in a state described by a linear combination of pendular states (a rotational wavepacket) whose alignment properties are not a priori known. We report a computational study of the time evolution of these states. We solve the reduced time-dependent Schrödinger equation for an effective Hamiltonian acting within the vibronic ground state. Our numerical results show that the time evolution and the achievement of adiabatic behavior depend critically on the detailed characteristics of the laser pulse and the rotational constant of the molecule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.