Abstract
We consider two-color heteronuclear photoassociation of a dual-species Bose-Einstein condensate into a Bose-Einstein condensate of dipolar molecules in the J=1 vibronic ground state, where a free-ground laser couples atoms directly to the ground state and a free-bound laser couples the atoms to an electronically excited state. This problem raises an interest because heteronuclear photoassociation from atoms to near-ground-state molecules is limited by the small size of the target state. Nevertheless, the addition of the electronically excited state creates a second pathway for creating molecules in the vibronic ground state, leading to quantum interference between direct photoassociation and photoassociation via the excited molecular state, as well as a dispersivelike shift of the free-ground resonance position. Using LiNa as an example, these results are shown to depend on the detuning and intensity of the free-bound laser, as well as the semiclassical size of both molecular states. Whereas strong enhancement enables saturation of the free-ground transition, coherent conversion from a two-species condensate of atoms to a condensate of dipolar molecules in the vibronic ground state is only possible for a limited range of free-bound detunings near resonance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.