Abstract
Time-gated radiography with monoenergetic 15-MeV protons, 3-MeV protons, and 4-MeV alpha particles has revealed a rich and complex evolution of electromagnetic field structures in and around imploding, directly driven inertial-confinement fusion (ICF) targets at the OMEGA laser facility. Plastic-shell capsules and solid plastic spheres were imaged during and after irradiation with ICF-relevant laser drive (up to 6 × 1014 W/cm2). Radial filaments appeared while the laser was on; they filled, and were frozen into, the out-flowing corona, persisting until well after the end of the laser drive. Data from specially designed experiments indicate that the filaments were not generated by two-plasmon-decay instabilities or by Rayleigh-Taylor instabilities associated with shell acceleration. Before the onset of visible filamentation, quasi-spherical field structures appeared outside the capsule in the images in a form that suggests outgoing shells of net positive charge. We conjecture that these discrete shells are related to multiple peaks seen previously in the spectra of protons ablated from the targets.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have