Abstract

A time-domain theory of frequency-locking gyrotron oscillators with low-Q resonators has been developed. The presented theory is based on the description of wave propagation by a parabolic equation taking into account the external signal by modification of boundary conditions. We show that the developed model can be effectively used for simulations of both single- and multi-mode operation regimes in gyrotrons driven by an external signal. For the case of low-Q resonators typical for powerful gyrotrons, the external signal can influence the axial field profile inside the interaction space significantly and, correspondingly, the value of the electron orbital efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.