Abstract

An acoustic imaging algorithm is proposed herein for transient noise source time reconstruction. Time domain formulations are not well suited for acoustic imaging because of the size of the resulting system to be inversed. Based on the phase coherence principle widely used in ultrasound imaging and image processing, the first step of the algorithm consists in proposing the phase coherence metric used to reject pixels that are unlikely to contribute to the radiated sound field. This translates in a reduction of the domain size and ill-posedness of the problem. In the second step, the inverse problem is solved using the Tikhonov regularization and the generalized cross-validation to extract the vibration field on the imaging domain. Two test cases are considered: a simulated baffled piston and a panel submitted to a mechanical impact in anechoic conditions. The actual vibration field of the panel is measured with an optical technique for reference. In both numerical and experimental cases, the reconstructed vibration field using the proposed approach compares well with their respective reference. The results confirm that transient excitations can be localized and quantified with the proposed approach, in contrast with the classical time-domain beamforming that dramatically overestimates its magnitude.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call