Abstract

Fast time-gated single-photon detectors demonstrated high depth sensitivity in the detection of localized absorption perturbations inside scattering media, but their use for in vivo clinical applications-such as functional imaging of brain activation-was impaired by their small (<0.04mm2) active area. Here, we demonstrate, both on phantoms and in vivo, the performance of a fast-gated digital silicon photomultiplier (SiPM) that features an overall active area of 8.6mm2, overcoming the photon collection capability of established time-gated single-pixel detectors by orders of magnitude, enabling deep investigations within scattering media and high signal-to-noise ratios at late photon arrival times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.