Abstract

A number of innovative experiments dedicated to neutrino and rare-event physics use liquefied noble-gases both as a target and as a detector. These media have the remarkable property to efficiently produce scintillation photons after the passage of ionizing particles. Scintillation light, which is used for triggering and timing purposes, is traditionally detected by large area Photo-Multiplier Tubes (PMTs) working at cryogenic temperature. Silicon Photo-Multiplier (SiPM) arrays are gradually substituting PMTs in many applications, especially where low voltages are required and magnetic field is present. One of the problems of this devices is the small active area. For this reason we built several prototype arrays made by different SiPM models with a common readout: the basic unit is a device with an active area of (1.2×1.2)cm2. A fast signal leading edge is crucial to realize devices to be used for triggering and timing. To this purpose we studied different series/parallel electrical configurations to obtain the best timing performance, by operating our custom arrays both at room and cryogenic temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call