Abstract
In this paper, we study probabilistic numerical methods based on optimal quantization algorithms for computing the solution to optimal multiple switching problems with regime-dependent state process. We first consider a discrete-time approximation of the optimal switching problem, and analyse its rate of convergence. Given a time step h, the error is in general of order (hlog(1/h))1/2, and of order h1/2 when the switching costs do not depend on the state process. We next propose quantization numerical schemes for the space discretization of the discrete-time Euler state process. A Markovian quantization approach relying on the optimal quantization of the normal distribution arising in the Euler scheme is analysed. In the particular case of uncontrolled state process, we describe an alternative marginal quantization method, which extends the recursive algorithm for optimal stopping problems as in Bally (2003) [1]. A priori Lp-error estimates are stated in terms of quantization errors. Finally, some numerical tests are performed for an optimal switching problem with two regimes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.