Abstract

BackgroundWalking balance in older adults is disproportionately susceptible to lateral instability provoked by optical flow perturbations. The prolonged exposure to these perturbations could promote reactive balance control and increased balance confidence in older adults, but this scientific premise has yet to be investigated. This proof of concept study was designed to investigate the propensity for time-dependent tuning of walking balance control and the presence of aftereffects in older adults following a single session of optical flow perturbation training.MethodsThirteen older adults participated in a randomized, crossover design performed on different days that included 10 min of treadmill walking with (experimental session) and without (control session) optical flow perturbations. We used electromyographic recordings of leg muscle activity and 3D motion capture to quantify foot placement kinematics, lateral margin of stability, and antagonist coactivation during normal walking (baseline), early (min 1) and late (min 10) responses to perturbations, and aftereffects immediately following perturbation cessation (post).ResultsAt their onset, perturbations elicited 17% wider and 7% shorter steps, higher step width and length variability (+171% and +132%, respectively), larger and more variable margins of stability (MoS), and roughly twice the antagonist leg muscle coactivation (p-values<0.05). Despite continued perturbations, most outcomes returned to values observed during normal, unperturbed walking by the end of prolonged exposure. After 10 min of perturbation training and their subsequent cessation, older adults walked with longer and more narrow steps, modest increases in foot placement variability, and roughly half the MoS variability and antagonist lower leg muscle coactivation as they did before training.ConclusionsFindings suggest that older adults: (i) respond to the onset of perturbations using generalized anticipatory balance control, (ii) deprioritize that strategy following prolonged exposure to perturbations, and (iii) upon removal of perturbations, exhibit short-term aftereffects that indicate a lessening of anticipatory control, an increase in reactive control, and/or increased balance confidence. We consider this an early, proof-of-concept study into the clinical utility of prolonged exposure to optical flow perturbations as a training tool for corrective motor adjustments relevant to walking balance integrity toward reinforcing task-specific, reactive control and/or improving balance confidence in older adults.Trial registrationclinicaltrials.gov (NCT03341728). Registered 14 November 2017.

Highlights

  • Older adults are at an exceptionally high risk of falls, and most of those falls occur during locomotor activities such as walking [1]

  • Compared to Baseline, changes in gait kinematics were accompanied by roughly twice the stance and swing phase antagonist coactivation for all three leg muscle pairs (2.13 ≤ t ≤ 5.01, p-values≤0.042, 0.62 ≤ d ≤ 1.45) (Fig. 4)

  • We report data in support of each of our three hypotheses, and discuss below our interpretation that older adults: (i) respond to the onset of perturbations using generalized anticipatory balance control, (ii) deprioritize that strategy following prolonged exposure to perturbations, and (iii) upon removal of perturbations, exhibit short-term aftereffects that indicate a lessening of anticipatory control, an increase in reactive control, and/or an increase in balance confidence

Read more

Summary

Introduction

Older adults are at an exceptionally high risk of falls, and most of those falls occur during locomotor activities such as walking [1]. Walking balance integrity is routinely quantified using step-to-step variations in foot placement (e.g., step width variability [8, 9]) and/or the relation between foot placement and postural deviations (e.g., margin of stability [10]) Orchestrating those adjustments, in response to balance challenges, depends on appropriate motor planning and execution, which in turn depend on having accurate and reliable sensory feedback. The prolonged exposure to these perturbations could promote reactive balance control and increased balance confidence in older adults, but this scientific premise has yet to be investigated This proof of concept study was designed to investigate the propensity for time-dependent tuning of walking balance control and the presence of aftereffects in older adults following a single session of optical flow perturbation training

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.