Abstract

BackgroundTranscranial direct current stimulation (tDCS) is capable of eliciting changes in cortical neuroplasticity. Increasing duration or repetition of tDCS during the after-effects of a first stimulation has been hypothesized to enhance efficacy. Computational models suggest sequential stimulation patterns with changing polarities to further enhance effects. Lasting tDCS effects on neural plasticity are of great importance for clinical applications.ObjectiveThe study systematically examined the influence of different tDCS paradigms on long term potentiation (LTP)-like plasticity in humans, focusing on stimulation duration, repetition frequency and sequential combinations of changing polarities as the underlying characteristics.MethodsAmplitude changes of motor evoked potentials (MEP) were measured in response to paired associative stimulation (PAS) 6 h after application of different tDCS protocols. In total, 36 healthy participants completed the study, randomised into three groups with different stimulation protocols (N = 12 each).ResultstDCS was able to display lasting modulatory effects on the inducibility of LTP-like plasticity in the human motor cortex 6 h after stimulation. TDCS with the anode on primary motor cortex significantly increased MEP amplitudes following PAS induction. Further analyses highlighted single stimulation block duration to be of higher importance than repetitive protocols for efficacy of effects.ConclusionstDCS is capable of inducing lasting changes in the brain’s capability to interact with future stimuli. Especially, effects on the inducibility of LTP-like plasticity might only be detectable with specific tests such as PAS and might otherwise be overlooked. Refined tDCS protocols should focus on higher current and duration of single stimulations instead of implementing complex repetitive schedules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.