Abstract
A finite-element, numerical model is used to compute time-dependent, three-dimensional fluid flow, mass transfer, and continuum growth kinetics in the potassium titanyl phosphate (KTP) solution crystal growth system of Bordui et al. The effects of a periodically-reversing crystal rotation schedule are analyzed for two different crystal-mounting geometries. Results suggest a lower probability of the occurrence of defects when the mounting geometry is designed to take advantage of periodic flow reversal effects on the supersaturation field.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have