Abstract

Treatment of lost circulation can represent anywhere from 5 to 25 % of the cost in drilling geothermal wells. The cost of the materials used for lost circulation treatment is less important than their effectiveness at reducing fluid losses. In geothermal systems, the high temperatures (>90 °C) are expected to degrade many commonly used lost circulation materials over time. This degradation could compromise different materials ability to mitigate fluid loss, creating more non-productive time as multiple treatments are needed, but may result in recovering desired permeability zones within the reservoir section over time. This research aimed to study how thermal degradation of eight different lost circulation materials affected their properties relevant to sealing loss zones in geothermal wells. Mass loss experiments were conducted with each material at temperatures of 90–250 °C for 1–42 days to measure the breakdown of the material at geothermal conditions, collecting gases during several experiments to determine the waste produced during degradation. Compaction experiments were conducted with the degraded materials to show how temperatures reduced the rigidity and increased packing of the materials. Viscosity tests were conducted to show the impact of different materials on drilling fluid rheology. Microscope observations were conducted to characterize the alterations to each material due to thermal degradation. Organic materials tend to degrade more than inorganic materials, with organics like microcellulose, cotton seed hulls and sawdust losing 30–50 % of their mass after 1 day of heating at 200 °C, while inorganics like magma fiber only lose ∼5–10 % of its mass after one day of heating at 200 °C. Granular materials are the strongest when compacted despite any mass loss, while fibrous and flaky materials are fairly weak and breakdown easily under stress. The materials do not generally affect fluid rheology unless they have a viscosifying agent as part of the mixture. Microscopic analysis showed that more rigid materials like microcellulose and cedar fiber degrade in brittle manners with splitting and fracturing, while others like cotton seed hulls degrade in more ductile manners forming meshes or clumps of material. The thermal breakdown of lost circulation materials tested suggests that each material should also be classified by its degree of thermal degradability, as at certain temperatures the materials can lose the capability to bridge loss zones around the wellbore.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call