Abstract

In this work, numerical optimization based on stochastic gradient methods is used to assist geothermal operators in finding improved field development strategies that are robust to accounted geological uncertainties. Well types, production rate targets and well locations are optimized to maximize the economics of low-enthalpy heat recovery in a real-life case with stacked reservoir formations. Significant improvements are obtained with respect to the strategy designed by engineers. Imposing fault stability constraints impacts significantly the optimal configurations, with coordinated well rates and placement playing a key role to boost efficiency of geothermal production while keeping stress change effects to acceptable limits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.