Abstract

In this work, we emphasize the importance of the bound-state dynamics to the two-electron ejection in double ionization processes. The conclusions of the present study are pertinent to all excitation or decay processes that proceed via well-defined intermediate states. A general strong-field time-dependent density matrix theory is established and applied to the case of neon, allowing us to analyze the role of the ionizing field in the interpretation of reported angular patterns [M. Kurka et al., J. Phys. B 42, 141002 (2009); A. S. Kheifets, J. Phys. B 42, 134016 (2009)] and in the dynamic ionic alignment. The present analysis reveals that short-pulse coherent excitation of the neon ionic doublet 2P(1/2,3/2) leads to quantum beats in the two-electron angular correlation patterns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.