Abstract
Understanding of interactions of nanomaterials with biomolecules (especially proteins) is of great importance to the area of nanobiotechnology. Graphene and its derivative such as graphene oxide (GO), are two-dimensional (2-D) nanomaterials with remarkable physical and chemical properties and have been broadly explored in biotechnology and biomedical application. Here, we have reported the nature of adsorption of trypsin on the GO surface, considering its biomedical implications. A simple incubation of trypsin on GO surface exhibits varying resistance to autolysis. The structural morphology of trypsin on the GO surface was studied by using atomic force microscopy (AFM), circular dichroism (CD), fluorescence, and total internal reflection fluorescence (TIRF) microscopies. Results suggest that the trypsin follows the Freundlich Isotherm. By the Langmuir model, the maximum adsorption capacity was found to be 100 mg/g. From protein assay results we have concluded that the native trypsin exhibits the highest catalytic efficiency (33.97*104 L mol−1 min−1) in comparison to other Trp-GO constructs. We have further visualized morphological change on GO-trypsin interface throughout the adsorption process by taking samples at definite time intervals, which suggests that the interaction of trypsin with GO is an example of the soft corona. Our findings may be implicated in enzyme engineering as well as enzyme-based bio-sensing applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.