Abstract

Electron-positron interactions have been utilized in various fields of science. Here we develop time-dependent multicomponent density functional theory to study the coupled electron-positron dynamics from first principles. We prove that there are coupled time-dependent single-particle equations that can provide the electron and positron density dynamics, and derive the formally exact expression for their effective potentials. Introducing the adiabatic local density approximation to time-dependent electron-positron correlation, we apply the theory to the dynamics of a positronic lithium hydride molecule under a laser field. We demonstrate the significance of the coupling between electronic and positronic motion by revealing the complex positron detachment mechanism and the suppression of electronic resonant excitation by the screening effect of the positron.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.